车牌识别软件,安装在PC上即可运行。可完成进出车辆识别抓图和对进出车牌信息进行常规的统计分析,并且支持车牌信息回查,提高管理水平。
车牌识别软件原理
车牌识别是基于图像分割和图像识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。车牌识别过程包括图像采集、预处理、车牌定位、字符分割、字符识别、结果输出等一系列算法运算,其运行流程如下:
图像采集:
通过高清摄像抓拍主机对卡口过车或车辆违章行为进行实时、不间断记录、采集。
预处理:
图片质量是影响车辆识别率高低的关键因素,因此,需要对高清摄像抓拍主机采集到的原始图像进行噪声过滤、自动白平衡、自动曝光以及伽马校正、边缘增强、对比度调整等处理。
车牌定位:
车牌定位的准确与否直接决定后面的字符分割和识别效果,是影响整个车牌识别率的重要因素。其核心是纹理特征分析定位算法,在经过图像预处理之后的灰度图像上进行行列扫描,通过行扫描确定在列方向上含有车牌线段的候选区域,确定该区域的起始行坐标和高度,然后对该区域进行列扫描确定其列坐标和宽度,由此确定一个车牌区域。通过这样的算法可以对图像中的所有车牌实现定位。
字符分割:
在图像中定位出车牌区域后,通过灰度化、灰度拉伸、二值化、边缘化等处理,进一步精确定位字符区域,然后根据字符尺寸特征提出动态模板法进行字符分割,并将字符大小进行归一化处理。
字符识别:
对分割后的字符进行缩放、特征提取,获得特定字符的表达形式,然后通过分类判别函数和分类规则,与字符数据库模板中的标准字符表达形式进行匹配判别,就可以识别出输入的字符图像。
结果输出:
将车牌识别的结果以文本格式输出。
车牌识别软件应用领域
车牌识别软件可广泛应用于智能交通、公路卡口、停车场管理、电子警察等领域。